100 research outputs found

    Fault imaging enhancement in Taranaki Basin, New Zealand and rock physics and inversion based reservoir characterization in the Central Gulf Coast region of Texas

    Get PDF
    Fault imaging technique and reservoir characterization based on rock physics analysis and pre-stack inversion has been widely used hydrocarbon exploration. For the fault imaging technique, the ant tracking has been widely used in fault interpretation. However, the reliability of the results is highly dependent on appropriately choosing a signal processing method and volume attributes. In our study area, which lies in the southern Taranaki Basin, we applied Graphic Equalizer as the processing tool and the Chaos attribute before running the ant tracking algorithm. Results show that the procedure provides a better result and can map both the major and minor faults more efficiently than the conventional fault interpretation procedure. For the reservoir characterization study, we use the Lower Wilcox strata which has been proven to be a good quality reservoir along the Central Gulf Coast of Texas. While the complexity of its sedimentary environment makes it hard to locate the isolated productive sand accurately. We carry out the rock physics analyses to provide a better understanding of the reservoir properties. Bulk density, P-wave velocity, and elastic moduli are extracted from four wells for analyzing the depth and temperature effects on compaction. A combination of three effective medium models is used for cement volume diagnostics. For the further reservoir characterization, we conduct the pre-stack seismic inversion with seven wells constrained. Our inversion results show a successful delineation of the reservoir using the Vp/Vs and S-Impedance values --Abstract, page iv

    A scheme to fix multiple solutions in amplitude analyses

    Full text link
    Decays of unstable heavy particles usually involve the coherent sum of several amplitudes, like in a multiple slit experiment. Dedicated amplitude analysis techniques have been widely used to resolve these amplitudes for better understanding of the underlying dynamics. For special cases, where two spin-1/2 particles and two (pseudo-)scalar particles are present in the process, multiple equivalent solutions are found due to intrinsic symmetries in the summed probability density function. In this paper, the problem of multiple solutions is discussed and a scheme to overcome this problem is proposed by fixing some free parameters. Toys are generated to validate the strategy. A new approach to align helicities of initial- and final-state particles in different decay chains is also introduced.Comment: 17 pages, 2 figure

    Tunable photochemical deposition of silver nanostructures on layered ferroelectric CuInP2_2S6

    Full text link
    2D layered ferroelectric materials such as CuInP2_2S6 (CIPS) are promising candidates for novel and high-performance photocatalysts, owning to their ultrathin layer thickness, strong interlayer coupling, and intrinsic spontaneous polarization, while how to control the photocatalytic activity in layered CIPS remains unexplored. In this work, we report for the first time the photocatalytic activity of ferroelectric CIPS for the chemical deposition of silver nanostructures (AgNSs). The results show that the shape and spatial distribution of AgNSs on CIPS are tunable by controlling layer thickness, environmental temperature, and light wavelength. The ferroelectric polarization in CIPS plays a critical role in tunable AgNS photodeposition, as evidenced by layer thickness and temperature dependence experiments. We further reveal that AgNS photodeposition process starts from the active site creation, selective nanoparticle nucleation/aggregation, to the continuous film formation. Moreover, AgNS/CIPS heterostructures prepared by photodeposition exhibit excellent resistance switching behavior and good surface enhancement Raman Scattering activity. Our findings provide new insight into the photocatalytic activity of layered ferroelectrics and offer a new material platform for advanced functional device applications in smart memristors and enhanced chemical sensors.Comment: 18 pages, 5 figure

    Orthogonal Subspace Learning for Language Model Continual Learning

    Full text link
    Benefiting from massive corpora and advanced hardware, large language models (LLMs) exhibit remarkable capabilities in language understanding and generation. However, their performance degrades in scenarios where multiple tasks are encountered sequentially, also known as catastrophic forgetting. In this paper, we propose orthogonal low-rank adaptation (O-LoRA), a simple and efficient approach for continual learning in language models, effectively mitigating catastrophic forgetting while learning new tasks. Specifically, O-LoRA learns tasks in different (low-rank) vector subspaces that are kept orthogonal to each other in order to minimize interference. Our method induces only marginal additional parameter costs and requires no user data storage for replay. Experimental results on continual learning benchmarks show that our method outperforms state-of-the-art methods. Furthermore, compared to previous approaches, our method excels in preserving the generalization ability of LLMs on unseen tasks.Comment: EMNLP 2023 finding

    TRACE: A Comprehensive Benchmark for Continual Learning in Large Language Models

    Full text link
    Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety. However, the continual learning aspect of these aligned LLMs has been largely overlooked. Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs, owing to both their simplicity and the models' potential exposure during instruction tuning. In this paper, we introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs. TRACE consists of 8 distinct datasets spanning challenging tasks including domain-specific tasks, multilingual capabilities, code generation, and mathematical reasoning. All datasets are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Our experiments show that after training on TRACE, aligned LLMs exhibit significant declines in both general ability and instruction-following capabilities. For example, the accuracy of llama2-chat 13B on gsm8k dataset declined precipitously from 28.8\% to 2\% after training on our datasets. This highlights the challenge of finding a suitable tradeoff between achieving performance on specific tasks while preserving the original prowess of LLMs. Empirical findings suggest that tasks inherently equipped with reasoning paths contribute significantly to preserving certain capabilities of LLMs against potential declines. Motivated by this, we introduce the Reasoning-augmented Continual Learning (RCL) approach. RCL integrates task-specific cues with meta-rationales, effectively reducing catastrophic forgetting in LLMs while expediting convergence on novel tasks
    corecore